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ted the “template effect” on the morphometric analysis of a pediatric brain MRI
database obtained from 8-year-old children through various measures of surface and volumetric
morphologies. We first constructed an age-appropriate template from an independent set of pediatric brain
images and then compared it with a well-known adult brain template, the ICBM152, in terms of the
morphometric features that resulted from our pediatric database. The individual cortical surface acquired
based on the pediatric template exhibited, on average, a significantly thinner cortex (−1.66±1.60%, t=−15.18),
larger cortical surface areas (0.31±0.70%, t=6.52), and a higher degree of cortical folding (0.08±0.13%,
t=8.72) while compared with those based on the adult template. We also found a significant increase in the
cerebrospinal fluid volume (−2.63±4.84) for the adult template based brains and the cortical gray matter
(GM) volume (6.10±7.81) for the pediatric template based brains. The cross-correlation of pediatric template
based individual brain data (0.95 without brain mask) was significantly higher than those of adult template
based (0.88) and the amount of deformation during non-linear spatial normalization was significantly
reduced when using the pediatric template (average magnitude of deformation in the cortical GM class:
1.71 mm vs. 2.23 mm, t=12.39). In addition, an “internal” pediatric template, taken from the study subjects
themselves, was generated and compared with the “external” pediatric template for reference. There was no
significant difference between these two pediatric brain templates and associated tissue probability maps.
The results show that it is necessary to be cautious when interpreting results from pediatric imaging studies
based on adult reference data.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Since the individual variability in brain mapping studies has to be
minimized in order to facilitate intra- and inter-individual compar-
isons and to generalize specific findings, a human brain template
aligned in the standardized space is an indispensable tool (Mazziotta
et al., 1995). Spatial normalization which minimizes the anatomical
variability between studied brain data is achieved by transforming
the individual brain image to a common template in stereotaxic
space. The brain template contains a priori knowledge about the
human brain, which is useful for the spatial normalization of a new
brain image. The Talairach and Tournoux (1988) reference frame is
widely used in such normalization procedures. It relies on aligning
the anterior and posterior commissures and the interhemispheric
plane of the source image with the brain template. However, it has a
).
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number of limitations. The most significant one is that the Talairach
system does not clearly represent the various peculiarities of in vivo
subjects since it was acquired from a single postmortem brain (Toga
and Thompson, 2001). Another well-known brain template for spatial
normalization is the ICBM152 (International Consortium for Brain
Mapping), which was generated by averaging anatomical magnetic
resonance imaging (MRI) data of 152 healthy normal adults (86 male,
66 female, 18–44 years old) after corrections for overall brain size and
orientation (Collins et al., 1994; Grabner et al., 2006). Although the
ICBM152 template is intuitively better suited for spatial norma-
lization, it remains to be established whether it is applicable to data
from subjects outside of the age range or with abnormal neuro-
pathological conditions. In particular, the use of this template in the
spatial normalization of pediatric brains is still questionable because
of the large difference in size, composition and shape between the
pediatric brain and the adult brain (Burgund et al., 2002; Courchesne
et al., 2000; Hoeksma et al., 2005; Lange et al., 1997; Muzik et al.,
2000; Wilke et al., 2008, 2002, 2003).

Several studies have found that there are some inevitable problems
when pediatric brains are aligned to an adult brain template (ABT)
(Burgund et al., 2002; Muzik et al., 2000). Using a standard ABT,
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contours of spatially normalized MRI volumes derived from the
pediatric group were more variable than those obtained from the
adult population (Muzik et al., 2000). Even though it has been
suggested to be sufficiently accurate for coarse-resolution (N5 mm)
functional MRI data (Burgund et al., 2002), these errors become more
evident when a higher resolution structural or functional data is
applied. In a simple statistical test for the regional group intensity
variance after registration, itwas shown that the alignmentof pediatric
brains to the ABTwas less successful with significant intensity variance
differences in the white matter and thalamic regions (Hoeksma et al.,
2005). In addition, serious misclassification of pediatric brain tissue in
several regions has also been reported due to the inappropriate use of a
priori information obtained from an adult population (Wilke et al.,
2003). Therefore, it is vital to use accurate reference data, especially
for the analysis of a pediatric population (Good et al., 2001).

There have been several approaches to evaluate the effect of using
a pediatric brain template (PBT) versus an ABT on the spatial
normalization of pediatric brain images (Machilsen et al., 2007;
Wilke et al., 2002, 2003). To the best of our knowledge, however, there
has not been any research to assess the effect of different brain
templates on cortical surface morphology. Even though the affine
scaling parameter should not be correlated with age if brain masking
was employed during the spatial normalization, non-linear deforma-
tions were found to be locally correlated with age in the parietal and
frontal areas and the total amount of volume change was significantly
lower when using a PBT (Wilke et al., 2002). However, it is important
to note that the influence of expected similarities between individual
pediatric brain and PBT might be incorporated in the result since the
template was based on the average of the same pediatric dataset. In
addition, the Wilke et al. (2002) PBT included a large variability in
normal age-related brain morphology by using data from children
over a wide age range (5 to 18 years old). This heterogeneity might
introduce more variations to the normalization of individual pediatric
brain images for a particular age within that range. A more age-
appropriate PBT may yield a mathematically better correspondence
and a diminishing disagreement in probability values for tissue
classification.

The purpose of this study is to investigate the template effect on
the morphometric analysis for a large sample of pediatric brain data.
In the following Materials and methods section, we will present the
detailed procedure to construct a PBT for a specific age (8 years old)
and introduce several processing steps based on each template
including linear and non-linear spatial normalization, tissue classifi-
cation, and extraction of cortical surface. Various measures with
regard to surface and volumetric characteristics are also presented for
a quantitative comparison between templates.

Materials and methods

Subjects and image acquisition

Subjectswere drawn from theQuebecNewbornTwin Study (QNTS)
which is an ongoing longitudinal study of twins whowere recruited at
birth between 1 April, 1995 and 31 December, 1998 in the Province of
Quebec, Canada. Two hundred eight subjects (8.40±0.11 years old)
took part in the study (86 males and 122 females). All 8-year-old
children were scanned using the same 1.5 T MRI scanner (Magnetom
Vision, Siemens Electric, Erlangen, Germany). The MRI sequences
acquired were (i) T1-weighted, sagittal, fast low-angle shot (FLASH) of
the whole head, designed to optimally discriminate between brain
tissues (TE=10 ms, TR=22 ms, flip angle=30°, 160 contiguous slices;
matrix size=224×256; 1×1×1 mm3 voxels), and (ii) the axial PD and
T2 sequence of the whole head for clinical evaluation and better
cerebral masking (TE=17/102 ms, TR=3516 ms, flip angle=180°, 81
contiguous slices; matrix size=256×256; 1×1×2 mm3 voxels). All of
the raw data underwent a series of visual quality controls which
included the level of intensity inhomogeneity within/between slices,
the amount of movement artifacts and geometric distortions (Evans
and Brain Development Cooperative Group, 2006). Written informed
consent was obtained from parents after full explanation of the study
aims and procedures. The study protocol was approved by the
scientific and ethics committees of Sainte Justine and Notre Dame
Hospitals in Montreal, Canada.

Construction of pediatric templates

The study by Wilke et al. (2003) created a pediatric template from
the study population, i.e. “internal” pediatric template (iPBT). The
present work is concerned with the difference between the effects of
two “external” templates and the issue of adult–pediatric brain
anatomy. Comparing an iPBT with an external ABT would introduce a
confusion of “external” vs. “internal” into the analysis of “adult” vs.
“pediatric”. To avoid any influence of additional similarity between
study subjects and template on the result, the external pediatric
template (ePBT) was generated from an independent set of pediatric
brain images. Since a more age-appropriate ePBT may yield a better
correspondence among individual datasets, MR images of 53 healthy
children (23 males, 30 females, 8.97±0.56 years old) were selected
from the Pediatric MRI Data Repository created by the NIH MRI Study
of Normal Brain Development (Evans and Brain Development
Cooperative Group, 2006). Even though more than 400 subjects
were available from this longitudinal study of typically developing
children, only 53 children from 8 to 9 years old were selected in order
to match the age distribution of subjects for this study. Awhole-brain,
3D T1-weighted spoiled gradient recalled (SPGR) echo sequence was
performed with the following parameters: TE=10–11 ms, TR=22–
25 ms, flip angle=30°, 124 contiguous sagittal slices; matrix
size=256×256; 1×1×1 mm3 voxels (Evans and Brain Development
Cooperative Group, 2006). The two-phase procedure for generating
the ePBT was the same approach as was used for the ICBM152
template, i.e. a symmetric iterative group volumetric template created
by including left–right flipped versions of all the original images and
constraining the evolving template (Grabner et al., 2006; Miller et al.,
1997). The ICBM152 template was chosen as the ABT in this study and
used as a reference model for linear registration and intensity
normalization, which is based on the median values, to correct the
inter-subject intensity variations.

Phase 1 (linear)
The intra-slice intensity variations of each dataset in the ePBT

ensemble introduced by inhomogeneity in the radio frequency field
were corrected by histogram spline sharpening. The inter-slice
intensity variations were clamped by thresholding the image intensity
gradient curve in all three planes using N3 (Sled et al., 1998). In
preparation for the following procedure, each image was initially
aligned to its own mirror image about the midline using a rigid-body
transformation. The resulting two transformations were then aver-
aged and the resultant transformation applied to the original image.
Once all the subject volumes were aligned, they were again flipped
over the midline. Both aligned and aligned-flipped images from each
subject were linearly registered to the initial model (ICBM152) using
the hierarchical fitting procedure to reduce the probability of local
minima (Collins et al., 1994). The resulting linear transformation for
the aligned-flipped image was then flipped about the X-axis in order
to be averaged with the transformation for the aligned image.
Afterwards, the averaged transformation was applied to the aligned
image and a flipped version of the averaged transformation to the
aligned-flipped image. Then all the resulting data were averaged as
well as all transformations. To ensure no bias from the initial reference
model, the inverted average scaling factor was then applied to the
averaged data which yielded the next generation model. This was
done in order to scale the model into the average size of all data used.
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Phase 2 (non-linear)
Subsequent iterations then followed using successively higher

resolution (32–2 mm in step size) of non-linear registration to match
individual data to the current iteration of the reference model
(Grabner et al., 2006). A general diagram of the procedures for the
nth iteration is shown in Fig. 1. Using the transformation parameters
from the previous iteration as a starting point, both the aligned and
aligned-flipped images were non-linearly registered to the reference
model generated from the previous iteration. The symmetric model
was generated by averaging the mean transformed images of the
aligned volumes, and used for the following iteration. In order to
ensure that no bias was introduced towards a particular intermediate
model during the construction of the final model, it is important to
note that registration of each step began with every image in its
initial space.

In order to use a priori information for tissue classification of
pediatric MRI data, the spatial transformations derived for the raw
MRI images were applied to the tissue classification maps of each
individual subject such that a probability map for each tissue class was
generated in the pediatric template space.

We also generated an iPBT from the 208 study subjects for
reference. Since it is impossible to differentiate a true template effect
from the result caused by an additional similarity when a subject is
processed based on its own average, the iPBT was compared with the
ePBT only in terms of the template itself and tissue probability maps.
The issue of an internal vs. external PBT will be addressed further in a
subsequent study.

Processing

The following pipeline image processing steps, based on both the
ePBT and ABT were applied for further analysis, as described in detail
elsewhere (Collins et al., 1994; Evans and Brain Development
Cooperative Group, 2006; Kim et al., 2005; MacDonald et al., 2000;
Fig. 1. A general overview of non-linear fitting and averaging procedure at nth iteration. Both
model (Tn −1) generated from the previous iteration using the transformation parameters (Yn
on the registration, which the transformation SFT should be equal to a flipped version of th
flipping SFT. This transformation (ST) of each subject is inverted and averaged within p
transformation (SAT) of each subject and applied to the aligned volume. Finally, the symmetric
and is going to be used for the following iteration.
Sled et al., 1998; Zijdenbos et al., 2002). At first, the native MR images
of all subjects were registered into each template using a linear
transformation and corrected for intensity non-uniformity artifacts
(Sled et al., 1998). All non-brain parts of the image including the skull
and meninges were removed by an automated brain extraction
algorithm (Smith, 2002). A hierarchical multi-scale non-linear fitting
algorithms (ANIMAL, Collins et al., 1994) was then applied (i) to
normalize the individual MR images in stereotaxic space, (ii) to
provide a priori information i.e. tissue probabilitymaps for subsequent
tissue classification using the neural network classifier (Zijdenbos et
al., 2002) and (iii) to obtain the 3D deformation vector field that maps
the individual brain volume onto the template. An artificial neural
network classifier was applied to identify gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF). Partial volume errors due
to tissue-mixing at their interfaces were estimated and corrected
using trimmed minimum covariance determinant method (Tohka et
al., 2004; Zijdenbos et al., 2002). Hemispheric cortical surfaces were
automatically extracted from each MR volume using the Constrained
Laplacian-based Automated Segmentation with Proximities (CLASP)
algorithm, which reconstructs the inner cortical surface by deforming
a spherical mesh onto the WM/GM boundary and then expanding the
deformable model to the GM/CSF boundary (Kim et al., 2005;
MacDonald et al., 2000). The accuracy of this technique had been
demonstrated in a phantom-based quantitative cross-validation
study, showing the best geometric and topologic accuracies and
mesh characteristics of the extracted cortical surface (Lee et al., 2006).
Then, we employed an iterative surface registration algorithmwith an
unbiased iterative group template showing enhanced anatomic detail
in order to assure the correspondence at each vertex of the cortical
surfacemodel between individuals (Lyttelton et al., 2007). For regional
analysis, automatic lobar parcellation which had been validated and
performed efficiently in previous studies, was applied for dividing
individual cortical surface into frontal, temporal, parietal and occipital
lobes (Im et al., 2008; Yoon et al., 2007). Four surface morphometric
the aligned (A) and aligned-flipped (F) images are non-linearlymatched to the reference
−1) from previous iteration as a starting point. Note that there is an important constraint
e transformation SAT. For each subject, the resulting transformations are combined by
opulation. The averaged transformation (T S) is then concatenated with the former
model (Tn) is generated by averaging themean transformed images of aligned volumes,
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indices (cortical thickness, cortical area, mean gyrification index and
cortical complexity) and four volumetric indices (intensity variance,
cross-correlation, tissue volume size and amount of local non-linear
deformation) were introduced in order to evaluate the performance of
the ePBT in comparison with the ABT. Finally, we verified if there was
any gender difference in template effects by subdividing the pool of
subjects into male and female subgroups.

Measurement of cortical surface characteristics

Since the cortical surface models were extracted from MR
volumes in stereotaxic space, the inverse transformation was applied
to the individual dataset so that various morphometrics, i.e. cortical
thickness, cortical area, mean gyrification index (GI) and cortical
complexity can be measured in native space. The measurement in
native space provided an unadjusted estimate of absolute cortical
characteristics (Shaw et al., 2006). The cortical thickness was
measured as the Euclidean distance between linked vertices on the
inner and outer surfaces, and then averaged for each hemisphere and
lobar regions for further regional analysis (Kabani et al., 2001; Lerch
and Evans, 2005; MacDonald et al., 2000). An intermediate cortical
surface, half-way between the inner and outer CLASP surfaces, was
used for measuring the surface morphometrics as it represents a
relatively unbiased representation of both sulcal and gyral regions
(Van Essen et al., 2006). The cortical area was calculated in the whole
hemisphere and each lobar region by summing the Voronoi area
based on geodesic distances over the folded topology of the surface
(Lotjonen et al., 1998). The middle cortical surface was divided into
the sulcal and gyral regions by thresholding the depth map, i.e. 3D
Euclidean distance from each vertex to the nearest voxel on the
convex hull volume (Im et al., 2008). The threshold of the depth map
was determined from the fact that the human cerebral cortex is a
highly folded sheet with 60–70% of its surface area buried within
folds (Van Essen and Drury, 1997; Zilles et al., 1988). The mean GI was
defined as the ratio between the total surface area and the
superficially exposed surface areas such as the gyral regions in
each hemisphere and lobe (Zilles et al., 1988). For cortical complexity,
we modified a similar idea from Thompson et al. (2005) that
calculated complexity from a spherical surface mesh deformed
hierarchically onto the cortex. The surface inflation technique was
applied to the middle cortical surface, and then the rate of decreasing
cortical areas with increasing inflation frequency (N=2–256) was
estimated as the complexity by least-squares fitting of a linear model
as shown below.

CC = 2−d lnCA Nð Þð Þ=d lnNð Þ;

where CA(N) represents the cortical area for the Nth inflation.
Intuitively, a complexity value of larger than 2 indicates an increase
in the cortical surface detail and cortical folding degree. To be
consistent with othermeasures, the cortical complexity wasmeasured
for each hemisphere and lobar region.

Measurement of volumetric characteristics

We would also like to examine whether the choice of template
influenced cortical GM volume and cortical surface morphometric
indices in a similar manner, i.e. would they change in the same
direction. For this purpose, the overall GM map obtained by tissue
classification was sub-divided into cortical and sub-cortical regions
via a sub-cortical GM stereotaxic mask.

The algorithm for spatial normalization used in this study
(Collins et al., 1994) maximizes the cross-correlation between
individual and template brain. A relatively low cross-correlation
value with low group intensity variance after alignment denotes a
structural bias in normalization, whereas a low cross-correlation
value with larger variance indicates some random differences
(Hoeksma et al., 2005). Furthermore, it is well-known that removal
of peripheral voxels by a whole brain masking has a significant
impact upon the spatial normalization process (Smith, 2002). In
order to assess the adequacy of each template for spatial normal-
ization, the voxel-wise intensity variance and the cross-correlation
values after linear alignment to each template were computed with
and without a brain mask.

The amount of local non-linear deformation was investigated to
demonstrate which template was most appropriate for normalization
of pediatric data. Smaller local changes indicate a greater similarity in
shape between the individual brain and template brain. The
magnitude values of the non-linear deformation vector field were
determined to evaluate the effect of non-linear warping of each
individual brain to the template. These deformation magnitude maps
were first smoothed with a 3D Gaussian kernel (FWHM of 8 mm) to
create a local weighted average of the surrounding voxels. This step
also renders the data more normally distributed and increases the
validity of the statistical tests (Ashburner and Friston, 2000). Next, we
calculated the average and maximum magnitude values of deforma-
tion within each of tissue classes (cortical GM, sub-cortical GM, WM,
CSF) to investigate the overall shape change (deformation) and to
avoid the inherent multiple comparison problem in voxel-wise
hypothesis testing. Finally, the class-wise values for each subject
were averaged to obtain a population index for themeanmagnitude of
non-linear deformation.

Statistical analysis

The vertex-based maps of cortical thickness in native space were
convolved with a diffusion smoothing kernel to increase the signal to
noise ratio (Chung et al., 2003). A Gaussian kernel size of 30 mm
FWHM was selected to maximize statistical power while minimizing
false positives (Lerch and Evans, 2005). A false discovery rate (FDR)
threshold of Pb0.01 was employed to control for multiple compar-
isons (Genovese et al., 2002). Lobar differences of cortical surface
characteristics and differences of classified tissue volume size
between templates were examined with a paired t-test, while the
amount of local non-linear deformationwithin each segmented tissue
region was estimated by an independent two sample t-test.

Results

Pediatric template vs. adult template

Fig. 2 shows the non-linear symmetric brain templates and tissue
probability maps of both the child and adult. It is noteworthy that our
methodology for generating a symmetric template is able to
adequately represent both common structures and variable sub-
regions within the population. The ePBT is slightly larger (5.7%) in
cerebral volume than the ABT, a somewhat counter-intuitive result.
This is a consequence of the different proportions of GM, WM and CSF
in the two populations, and the linear normalization procedure (phase
1) does not accommodate these differences because it might not
introduce distortions into the resulted images. On the other hand, the
ABT does show a larger ventricle and outer CSF regions than those of
the ePBT (Fig. 2a). Significant developmental changes were observed
in the tissue probability maps such as the reduced regional GM
patterns (relative volume, ePBT: 59.1% vs. ABT: 53.1%), and increased
total WM (28.2% vs. 31.1%) and CSF (12.7% vs. 15.8%) in ABT (Fig. 2b).
Since the tissue probability maps were used in tissue classification as
a priori information and the cortical surfaces were extracted from
resulted tissue-classified images, several differences in the whole
brain template and tissue probability maps could affect the outcomes
of the morphometric analysis for pediatric brain, as detailed in the
following sections.



Fig. 2. (a) Brain template and associated tissue probability maps for CSF, white matter and gray matter (top: external adult template (ABT); middle: external pediatric template
(ePBT); bottom: internal pediatric template (iPBT)). (b) The difference (N0.5, minimum cluster size=200 voxels) in tissue probability distributionwas color-coded and superimposed
upon the ePBT (top: ePBT–ABT; bottom: ePBT–iPBT). Blue represents a negative difference and red indicates a positive one. The software tool MRIcro was used to display the image
and to set the minimum cluster size (http://www.mricro.com).
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The results of the comparison between the iPBT and ePBT are also
shown in Fig. 2. Contrary to the external adult–pediatric template
comparison, there was no significant difference between the iPBT and
ePBT, except for a slightly clearer boundary in the iPBT that could arise
from a larger sample size (53 vs. 208 subjects, Fig. 2a). Even though
therewas aminor difference between the tissue probability maps, this
could have resulted from a slight misalignment between templates
rather than from a real difference (Fig. 2b). It was noticeable that the
gyral patterns of each template are different even after alignment
using the affine transformation. The parallel blue and red colors
shown in Fig. 2b suggest a simple misalignment due to affine
transformation between templates (N.B. not between subjects,
which is the non-linear transformation). In addition, there were no
significant differences in the relative tissue volumes (Internal vs.
External: CSF: 11.3% vs. 12.7%; GM: 60.1% vs. 59.1%; WM: 28.6% vs.
28.2%).
Statistical results for cortical surface characteristics

Localized differences of cortical thickness between the ePBT and
ABTare displayed in Fig. 3. The cortical thickness based on the ABTwas
greater in all vertices (mean difference in left hemisphere: 1.7±0.6%,
right hemisphere: 1.6±0.7%). In particular, the frontal, occipital and
medial regions in both hemispheres showed significant differences.

The statistical results of lobar differences in cortical surface
characteristics between templates are also presented in Table 1. As
expected, the mean cortical thickness based on the ABT was
significantly greater in both hemispheres and all lobes. Although the
female subgroup showed a slightly greater difference between
templates in all brain regions except the left temporal lobe, there
was no significant difference between the two subgroups. On the
other hand, the cortical areas based on the ePBT were significantly
larger in bilateral frontal lobes than those based on the ABT. In

http://www.mricro.com


Fig. 3. Statistical map of vertex based t-test for the difference of cortical thickness
between templates. Mean difference and corrected p value are color-coded andmapped
onto the iterative group template which is a target model of surface registration. All of
the vertices show greater thickness in the adult template.
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contrast with females, the male subgroup did not exhibit any
significant differences in areas for the left lobar regions. In addition,
there was a significant gender difference in the left frontal lobar area
(P=0.007). The mean GI based on the ABT was significantly greater in
the left temporal lobe, and vice versa in the bilateral parietal lobes. The
female subgroup showed significant differences in GI between
templates for the left parietal and bilateral temporal lobes. However,
the male subgroup only showed a significant difference in GI for the
right parietal lobe. There was also a significant gender difference in GI
for the right temporal lobe (P=0.074). The cortical complexities of all
Table 1
Cortical surface characteristics based on different templates

Hemisphere Frontal

CTa L W 1.73±1.80 1.85±2.07
M 1.65±1.69 1.71±1.90
F 1.78±1.88 1.95±2.18

R W 1.59±1.72 1.78±1.87
M 1.38±1.83 1.54±1.89
F 1.74±1.64 1.95±1.85

CA L W −0.31±0.96⁎⁎ −0.4±1.38⁎
M −0.17±0.96 −0.07±1.34b

F −0.41±0.94⁎⁎ −0.63±1.36⁎
R W −0.31±0.79⁎⁎ −0.51±1.41⁎

M −0.34±0.77⁎⁎ −0.51±1.50⁎
F −0.30±0.81⁎⁎ −0.51±1.35⁎

mGI L W −0.16±3.46 −0.15±3.18
M −0.15±3.81 −0.12±3.48
F −0.17±3.20 −0.18±2.96

R W −0.37±3.85 −0.33±3.57
M −0.97±4.26 −0.63±3.78
F 0.05±3.49 −0.12±3.42

CC L W −0.08±0.18⁎⁎ −0.07±0.18⁎
M −0.07±0.20⁎ −0.09±0.19⁎
F −0.09±0.18⁎⁎ −0.06±0.18⁎

R W −0.07±0.15⁎⁎ −0.09±0.16⁎
M −0.06±0.16⁎⁎ −0.08±0.17⁎
F −0.08±0.13⁎⁎ −0.10±0.15⁎

All values represent a percentage of the difference between templates. Positive value indica
Note: CT: cortical thickness; CA: cortical area; mGI: mean gyrification index; CC: cortical com
⁎ Pb0.01.
⁎⁎ Pb0.001.
a Mean values of cortical thickness based on the ABT are significantly greater than those
b There is significant gender difference in template effect.
regions except the right occipital lobe were significantly increased in
the cortical surface based on the ePBT, while there was no significant
gender difference.

Statistical results for volumetric characteristics

The differences of brain tissue volumes in native space between
templates are reported in Table 2. The volume of the CSF tissue class
was significantly greater for the ABT while the cortical GM based on
the ePBT was significantly increased. The increment of sub-cortical
GM volume based on the ABT was correlated with an increase in WM
volume based on the ePBT. No significant gender difference between
templates was observed for the volumetric characteristics and hence
those results are not reported.

Regardless of the brain mask, the cross-correlation between the
individual and template brains was significantly lower for the ABT
(Fig. 4), while there was no significant difference between the two
templates in voxel-wise intensity variance. However, the intensity
variance within the brain mask was rather low and the absolute value
of the cross-correlation was increased when using a brain mask.
Therefore, a brain masking procedure should be employed when
pediatric imaging data is spatially normalized for further morpho-
metric analysis. Table 2 lists the average and maximummagnitudes of
the deformation field within segmented tissue regions. The average
and maximum magnitude for the whole brain were 2.2 mm and
7.8 mm for the ABT and 1.7 mm and 6.5 mm for the ePBT (Pb0.001),
respectively. The necessary amount of deformation for warping
pediatric data to the ABT was significantly greater in all segmented
tissue regions than using the ePBT (CSF: 20.1±8.6%; GM: 23.4±7.8%;
WM: 24.1±10.4%; cortical GM: 23.1±8.0%; sub-cortical GM: 21.9±
17.5%).

Discussion

We have presented a detailed procedure to construct a brain
template from high resolution MR images of pediatric population. The
Temporal Parietal Occipital

1.64±1.75 1.55±1.80 1.81±1.92
1.66±1.66 1.48±1.72 1.76±1.96
1.64±1.84 1.60±1.86 1.85±1.90
1.45±1.76 1.38±1.74 1.63±1.91
1.22±1.91 1.22±1.92 1.49±2.02
1.62±1.63 1.50±1.60 1.73±1.83

⁎ −0.15±1.74 −0.42±2.83 −0.06±2.23
0.03±1.64 −0.38±2.85 −0.23±2.09

⁎ −0.28±1.80 −0.45±2.83 0.06±2.33
⁎ 0.04±1.81 −0.49±3.10 0.06±2.05
⁎ −0.20±1.83 −0.44±3.15 0.17±2.18
⁎ 0.21±1.79 −0.52±3.07 −0.02±1.95

1.51±5.99⁎⁎ −1.41±4.97⁎⁎ −0.26±3.52
1.39±6.30 −1.31±5.56 −0.33±3.91
1.59±5.80⁎ −1.48±4.53⁎⁎ −0.22±3.24
1.00±5.89 −1.37±5.39⁎⁎ −0.55±3.80

−0.20±6.68b −2.12±5.93⁎⁎ −0.75±3.69
1.85±5.13⁎⁎ −0.84±4.93 −0.41±3.89

⁎ −0.05±0.16⁎⁎ −0.10±0.27⁎⁎ −0.06±0.32⁎
⁎ −0.04±0.17 −0.09±0.24⁎⁎ −0.02±0.34
⁎ −0.06±0.14⁎⁎ −0.12±0.29⁎⁎ −0.08±0.30⁎⁎
⁎ −0.03±0.14⁎⁎ −0.11±0.20⁎⁎ −0.03±0.25
⁎ −0.04±0.15 −0.11±0.19⁎⁎ −0.01±0.29
⁎ −0.03±0.13⁎ −0.12±0.21⁎⁎ −0.05±0.21

tes that a measure based on the ABT is greater than that based on the ePBT.
plexity; L: left; R: right; W: whole population; M: male subgroup; F: female subgroup.

based on the ePBT regardless of lobe or population.



Table 2
Volumetric characteristics based on different brain template in segmented tissue regions

CSF WM GM SUB_GM COR_GM

VOL_DIFF (mm3) −2.63±4.84⁎⁎ 1.31±6.86⁎ 5.77±8.29⁎⁎ −0.33±1.02⁎⁎ 6.10±7.81⁎⁎
AVG_MAGa (mm) ABT 2.28±0.46 2.04±0.47 2.20±0.45 1.80±0.46 2.23±0.46

ePBT 1.83±0.42 1.55±0.42 1.69±0.39 1.39±0.44 1.71±0.40
MAX_MAGa (mm) ABT 6.64±1.18 6.62±1.20 6.74±1.18 6.19±1.20 6.73±1.18

ePBT 5.58±1.24 5.47±1.29 5.64±1.23 5.19±1.19 5.60±1.23

The difference of tissue volume was calculated by subtracting a measure based on the ePBT from one based on the ABT.
Note: VOL_DIFF: volume difference; AVG: average; MAG: magnitude of deformation field; MAX: maximum; ABT: adult template; ePBT: external pediatric template; CSF: cerebrospinal
fluid; WM: white matter; GM: gray matter; SUB: sub-cortical; COR: cortical.
⁎ Pb0.01.
⁎⁎ Pb0.001.
a The amount for warping to the ABT is significantly greater in all regions (independent two sample t-test Pb0.001).
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constructed ePBT is larger than the ABT which is in accordance with
the previous pediatric template study (Thompson et al., 2000b). The
sectional view of the ePBT exhibits excellent delineation of even small
morphological structures (Fig. 2). However, there are apparent
differences in the tissue probability maps as the ePBT has relatively
more GM, and lessWMand CSF than the ABT. This is also in agreement
with previous studies for normal brain development (Giedd et al.,
1999; Pfefferbaum et al., 1994; Thompson et al., 2000a). While cortical
and sub-cortical GM volumes show evidence of reduction after late
childhood, WM volume appears to be increasing robustly into
adulthood and the absolute volume of ventricular and extracerebral
CSF increases substantially and almost linearly throughout the life
span (Courchesne et al., 2000). One study suggested that significant
tissue misclassification would be likely to occur when analyzing a
pediatric sample with adult a priori information since a strong bias
might already be inserted into the data by processing them on the
basis of possibly inappropriate a priori information (Wilke et al.,
2003). However, it was important to confirm these effects on the
morphometric results by applying a PBT and its a priori information to
an independent set of pediatric brain images as what we have
accomplished in this study.

The individual cortical surface based on the ePBT was character-
ized by thinner cortical thickness, larger cortical surface area and
higher degree of cortical folding than those based on the ABT. Since
the cortical surface extraction process depends upon the results of
tissue classification as mentioned above, the difference in volumes of
native cortical GM observed when using the two templates (Table 2)
Fig. 4. Mean (standard deviation) of cross-correlation values between individual and each t
using brain mask, the cross-correlation with the adult template is significantly lower in bot
could account for the significant difference observed in cortical
thickness. Though there is no evidence of correlation between the
degree of cortical surface folding and brain volume (Zilles et al., 1988),
it is reasonable to presume that if two brains of different sizes (i.e.
volume) have the same cortical surface area, then the smaller brain
must have a higher surface folding complexity. The measurements of
cortical folding pattern, mean GI and cortical complexity demonstrate
a higher degree of folding for the ePBT-based pediatric brain.

While intensity variance of the pediatric data after linear
alignment was negligible for both templates, the cross-correlation
value for the ePBT was significantly higher than for the ABT and the
amount of deformation to the ePBT was significantly less. This
suggests that the ePBT is more appropriate for stereotaxic alignment
of the pediatric data than the ABT. When attempting to capture the
variance within a population, it is important to measure individual
variancewith respect to an appropriate populationmean such that the
total variance is minimized (Bookstein, 1997). Using the mean
variances of one population (e.g. adults) to investigate another
population (e.g. children) inevitably introduces a systematic bias.
The more similar the individual and template is, the less deformation
is needed for each individual to truly reflect the anatomical variability
within the target population (Guimond et al., 2000). Table 2 shows
that remarkably less average deformations are required and more
accuracy is obtained when aligning the pediatric dataset to our ePBT.
These results re-affirm that a specific PBT represents more accurate
anatomical features of a specific pediatric population than one based
on adults (Thompson et al., 2000b).
emplate with and without brain mask. Although the absolute value is increased when
h cases.
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Methodological considerations

As is done when constructing MRI templates for adult brain
studies, a large population is needed to create a good quality,
representative template. Data used for the ePBT in this study were
obtained from the Pediatric MRI Data Repository created by the NIH
MRI Study of Normal Brain Development (http://www.bic.mni.mcgill.
ca/nihpd/info). This is a multi-site, longitudinal study of typically
developing children, ranging from newborn to young adulthood
(Evans and Brain Development Cooperative Group, 2006). For that
database, MRI and an extensive behavioral data were collected in a
demographically-representative pediatric population. We only used
53 subjects out of 400 subjects (4.6–18.3 years old) that are matched
to the age distribution of our QNTS subjects to create the ePBT
described in this study. Although subjects were imaged at multiple
sites, data were collected with an identical imaging protocol. This
minimized the differences among images with respect to several
criteria such as geometric accuracy, high contrast spatial resolution,
image intensity non-uniformity, signal ghosting, and slice thickness
(Evans and Brain Development Cooperative Group, 2006). This
database provides the means for characterizing healthy brain
maturation in relationship to behavior and serve as a source of
control data for studies of childhood disorders.

We employed surface-based lobe measures for cortical folding
pattern by mean of GI and complexity. Since these 3D measures were
independent of the imaging plane, we avoided a shortcoming of
previous GI measures related to the length of an inner and outer
cortical contour in 2D slices of the brain (Zilles et al., 1988). Even
though both complexity and GI are dependent upon a comparison
between the whole area of cerebral cortex and the size of folded area,
it is difficult to deduce a mathematical relation between those
measures. The GI metric makes use of location-specific information
without referring to variable spatial scales, whereas the calculation of
complexity considers the surface to be smoothed at a series of
different spatial scales (Kiselev et al., 2003). Two measures provide
complementary information that may be useful for characterizing
cortical folding and ameans to detect subtle and distributed variations
in anatomic structure, not apparent by visual inspection.

Although the volumetric characteristics showed no significant
gender difference between the two templates, several surface
characteristics, especially the cortical area in left frontal lobe and
mean GI in right temporal lobe, exhibited significant gender
differences (Table 2). It has been demonstrated that surface-based
brain mapping could offer more advantages to the study of both local
and global properties of the human brain over volume-based one,
providing anatomical features such as the cortical thickness and
geometrical features such as folding patterns (Fischl et al., 1999). Since
the intrinsic topology of cerebral cortex is that of a 2D sheet and the
considerable amount of cortex is buried within cortical folds (Van
Essen and Drury, 1997; Zilles et al., 1988), a surface-based analysis for
the cortex should be adapted to the folding patterns of individual brain.

Conclusion

In this study, we have demonstrated that the use of an age-
matched pediatric brain template in a pediatric study leads to a
considerably different tissue distribution from that obtained with an
adult-based template. Compared with the ABT, the average amount of
local deformation over segmented tissue regions during non-linear
registration was reduced over 20% when using the ePBT. The
interpretation of pediatric imaging data based on the template from
adult population should be undertaken with circumspection. Tem-
plate performance was evaluated in terms of various surface and
volumetric characteristics of an independent pediatric dataset. The
comparison of an external adult with an external pediatric template
confirms previous studies that stressed the need for a pediatric
template. In addition, we also extended these findings by removing
the inherent confound in a comparison of external adult versus
internal pediatric template even though there was no significant
difference between the internal and external pediatric template.
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Appendix A. Brain Development Cooperative Group

TheMRI Study of Normal Brain Development is a cooperative study
performed by six pediatric study centers in collaboration with a Data
Coordinating Center (DCC), a Clinical Coordinating Center (CCC), a
Diffusion Tensor Processing Center (DPC), and staff of the National
Institute of Child Health and Human Development (NICHD), the
National Institute of Mental Health (NIMH), the National Institute on
Drug Abuse (NIDA), and the National Institute for Neurological
Diseases and Stroke (NINDS), Rockville, Maryland. Key personnel
from the six pediatric study centers are as follows: Children's Hospital
Medical Center of Cincinnati, Principal Investigator William S. Ball, M.
D., Investigators Anna Weber Byars, Ph.D., Mark Schapiro, M.D.,
Wendy Bommer, R.N., April Carr, B.S., April German, B.A., Scott Dunn,
R.T.; Children's Hospital Boston, Principal Investigator Michael J.
Rivkin, M.D., Investigators Deborah Waber, Ph.D., Robert Mulkern, Ph.
D., Sridhar Vajapeyam, Ph.D., Abigail Chiverton, B.A., Peter Davis, B.S.,
Julie Koo, B.S., Jacki Marmor, M.A., Christine Mrakotsky, Ph.D., M.A.,
Richard Robertson, M.D., Gloria McAnulty, Ph.D; University of Texas
Health Science Center at Houston, Principal Investigators Michael E.
Brandt, Ph.D., Jack M. Fletcher, Ph.D., Larry A. Kramer, M.D.,
Investigators Grace Yang, M.Ed., Cara McCormack, B.S., Kathleen M.
Hebert, M.A., Hilda Volero, M.D.; Washington University in St. Louis,
Principal Investigators Kelly Botteron, M.D., Robert C. McKinstry, M.D.,
Ph.D., InvestigatorsWilliamWarren, Tomoyuki Nishino, M.S., C. Robert
Almli, Ph.D., Richard Todd, Ph.D., M.D., John Constantino, M.D.;
University of California Los Angeles, Principal Investigator James T.
McCracken, M.D., Investigators Jennifer Levitt, M.D., Jeffrey Alger, Ph.
D., Joseph O'Neil, Ph.D., Arthur Toga, Ph.D., Robert Asarnow, Ph.D.,
David Fadale, B.A., Laura Heinichen, B.A., Cedric Ireland B.A.; Children's
Hospital of Philadelphia, Principal Investigators Dah-JyuuWang, Ph.D.
and Edward Moss, Ph.D., Investigators Robert A. Zimmerman, M.D.,
and Research Staff Brooke Bintliff, B.S., Ruth Bradford, Janice Newman,
M.B.A. The Principal Investigator of the data coordinating center at
McGill University is Alan C. Evans, Ph.D., Investigators Rozalia
Arnaoutelis, B.S., G. Bruce Pike, Ph.D., D. Louis Collins, Ph.D., Gabriel
Leonard, Ph.D., Tomas Paus, M.D., Alex Zijdenbos, Ph.D., and Research
Staff Samir Das, B.S., Vladimir Fonov, Ph.D., Luke Fu, B.S., Jonathan
Harlap, Ilana Leppert, B.E., Denise Milovan, M.A., Dario Vins, B.C.,, and
at Georgetown University, Thomas Zeffiro, M.D., Ph.D. and John Van
Meter, Ph.D. Ph.D. Investigators at the Neurostatistics Laboratory,
Harvard University/McLean Hospital, Nicholas Lange, Sc.D., and
Michael P. Froimowitz, M.S., work with data coordinating center
staff and all other team members on biostatistical study design and
data analyses. The Principal Investigator of the Clinical Coordinating
Center at Washington University is Kelly Botteron, M.D., Investigators
C. Robert Almli Ph.D., Cheryl Rainey, B.S., Stan Henderson M.S.,
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The Principal Investigator of the Diffusion Tensor Processing Center at
the National Institutes of Health is Carlo Pierpaoli, MD, Ph.D.,
Investigators Peter J. Basser, Ph.D., Lin-Ching Chang, Sc.D., Chen
Guan Koay, Ph.D. and LindsayWalker, M.S. The Principal Collaborators
at the National Institutes of Health are Lisa Freund, Ph.D. (NICHD),
Judith Rumsey, Ph.D. (NIMH), Lauren Baskir, Ph.D. (NIMH), Laurence
Stanford, PhD. (NIDA), Karen Sirocco, Ph.D. (NIDA) and from NINDS,
Katrina Gwinn-Hardy, M.D., and Giovanna Spinella, M.D. The Principal
Investigator of the Spectroscopy Processing Center at the University of
California Los Angeles is James T. McCracken, M.D., Investigators Jeffry
R. Alger, Ph.D., Jennifer Levitt, M.D., Joseph O'Neill, Ph.D.
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